The breakthrough ironmaking technologies combined with ENERGIRON, Blast furnace and Syngas

Hiroshi Ichikawa : Nippon Steel & Sumikin Engineering Co., Ltd.
Toshitaka Nakayama : Nippon Steel & Sumikin Engineering Co., Ltd.
Pablo E. Duarte : HYL Technologies S.A. de C.V.
Alessandro Martinis : Ironmaking DRI, Danieli & C.
1. Introduction
2. Features of ENERGIRON process
3. Charging Hi-C DRI and optimized BF operation
4. Beneficial using by-pro gas (COG, BFG, LDG) in integrated steel mill
5. Combination of coal gasification and ENERGION
6. Conclusion
1. Introduction

Strategic alliance with Tenova, Danielli and NSENGI

(1) Blast Furnace Technology
(2) By-pro Gas Utilizing Technology
(3) Coal Gasification Technology

This technologies can expand ENERGIRON to the integrated steel mills and in non-natural gas producing region.
1. Introduction

2. **Features of ENERGIRON process**

3. Charging Hi-C DRI and optimized BF operation

4. Beneficial using by-pro gas (COG, BFG, LDG) in integrated steel mill

5. Combination of coal gasification and ENERGION

6. Conclusion
2. Features of ENERGIRON process: Hi-C DRI

ENERGIRON-ZR Process and Hi-C DRI

- ENERGIRON-ZR is the most advanced DR process due to no external Reformer.
- ENERGIRON-ZR can produce Hi-C DRI because of “In-situ Reforming”, gas reforming, reduction and carburization of DRI inside the reactor.
2. Features of ENERGIRON process: Hi-C DRI

Comparison of Hi-C DRI and Low C HBI

- Hi-C DRI has the form of \(\text{Fe}_3\text{C} \) that prevents re-oxidation
- Hi-C DRI has higher reduction rate because of carbon content and porosity
- The size of Hi-C DRI is same as iron ore pellet, it makes the handling to be easy

⇒ Hi-C DRI is more suitable for DRI charging to BF

<table>
<thead>
<tr>
<th></th>
<th>High C DRI</th>
<th>Low C HBI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Picture</td>
<td>![Image 1]</td>
<td>![Image 2]</td>
</tr>
<tr>
<td>Fe metallization (%)</td>
<td>92 - 96</td>
<td>92 - 96</td>
</tr>
<tr>
<td>Carbon (%)</td>
<td>2.5 - 5.0</td>
<td>0.8 - 2.5</td>
</tr>
<tr>
<td>Apparent Density (g/cm³)</td>
<td>3.4 - 3.6</td>
<td>5.0 - 5.5</td>
</tr>
<tr>
<td>Porosity (%)</td>
<td>50 - 54</td>
<td>26 - 33</td>
</tr>
<tr>
<td>Typical Size (mm)</td>
<td>4 - 20 (diameter)</td>
<td>30 x 50 x 110</td>
</tr>
<tr>
<td>Production cost ($/t-DRI)</td>
<td>Base</td>
<td>+10 - 15</td>
</tr>
</tbody>
</table>
2. Features of ENERGIRON process : Hi-C DRI
Hi-C DRI with Fe₃C and its stability → No hot briquetting

• Most of the Carbon in Hi-C DRI is Fe₃C. If Hi-C DRI contains 4% of total carbon, **90-95%** of the total carbon is present as Fe₃C.
• Hi-C DRI is very **stable against re-oxidation** because of **high Fe₃C** content.
⇒ **Easy storage and transportation without hot briquetting**

<Fe₃C in High C DRI>

<Stability of High C DRI against water & air>
Contents

1. Introduction
2. Features of ENERGIRON process
3. Charging Hi-C DRI and optimized BF operation
4. Beneficial using by-pro gas (COG, BFG, LDG) in integrated steel mill
5. Combination of coal gasification and ENERGION
6. Conclusion
3. Charging Hi-C DRI and optimized BF operation

Summary

1. **By Charging Hi-C DRI and optimized BF hardware and operation**, Hot metal cost is decreased by 6~10 US$/t, at annual hot metal production is 9 million ton, annual merit is 54~90 million US$.

2. **CO$_2$ emission** decreased by 1.6 million ton annually, at annual hot metal production is 9 million ton. It is corresponded to 13 million US$ annually, based on present EU-ETS credit (8 US$/t-CO2).
Effect of Low-C HBI Charging to BF

- Many operational tests regarding **Low-C HBI** charging to BF have been executed in the past.
- Hot metal production increases by **6-8%** and coke rate decreases by **5-7%** per 100kg of metallic iron per ton of pig iron.
Improvement of DRI charging operation

In order to improve the feasibility of DR plant for BF (coke reduction and production increase), following two items are very effective.

(1) Charging Hi-C DRI to BF
(2) Optimum hardware and operation of BF
3.1. Additional effects of Hi-C DRI

Improvement of reducing in BF by **Hi-C DRI**

Wustite (FeO) in **Hi-C DRI** can be **reduced by carbon** in Hi-C DRI **by only heated**.

Generated CO gas can advance to **reduce the iron ore around Hi-C DRI**, compared to low carbon HBI.

\[
\begin{align*}
\text{FeO} + \text{C} & \rightarrow \text{Fe} + \text{CO} \\
\text{C} + \text{CO}_2 & \rightarrow 2 \text{CO} \\
\text{FeO} + \text{CO} & \rightarrow \text{Fe} + \text{CO}_2 \\
\text{FeO} + \text{H}_2 & \rightarrow \text{Fe} + \text{H}_2\text{O} \\
\text{FeO} + \text{CO} & \rightarrow \text{Fe} + \text{CO}_2
\end{align*}
\]
3.1. Additional effects of Hi-C DRI

Improvement of permeability in BF by **Hi-C DRI**

Hi-C DRI charging can **improve the permeability** in BF.

<Gas permeability laboratory test results>

![Graph showing permeability test results]

- **Sinter ore 100%**
- **Sinter ore 80% + High C DRI 20%**

<table>
<thead>
<tr>
<th>Temperature [degC]</th>
<th>Reduction ratio [%]</th>
<th>Time [min]</th>
<th>Pressure drop [kPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>800</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>900</td>
<td></td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td>60</td>
<td>20</td>
</tr>
<tr>
<td>1100</td>
<td></td>
<td>90</td>
<td>30</td>
</tr>
<tr>
<td>1200</td>
<td></td>
<td>120</td>
<td>40</td>
</tr>
<tr>
<td>1300</td>
<td></td>
<td>150</td>
<td>50</td>
</tr>
<tr>
<td>1400</td>
<td></td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>1500</td>
<td></td>
<td></td>
<td>70</td>
</tr>
</tbody>
</table>

S value (kPa·min):
- **Sinter 100%**: 827
- **Sinter 80% + High C DRI 20%**: 191

Reduction ratio
- **1/4 to 1/5**
3.2. Additional effects of optimum hardware and operation of BF

Control gas flow uniform

- The point for achieving lower coke rate and higher productivity is to control gas flow uniform. To make the gas flow uniform, the following two points are necessary.
 1) **Uniform burden distribution** in radius direction in BF
 2) **Proper center gas flow**

![Diagram showing control gas flow uniformity](image)
3.2. Additional effects of optimum hardware of BF Material flow control system

- In case of **Conventional parallel hoppers** (A), materials tend to be charged into BF **non-uniform**, because of **horizontal component** of the velocity.
- **NSENGI’s material flow control system** (B) can prevent inertia-caused uneven flows, so can charge materials into BF **uniformly**.
3.2. Additional effects of optimum hardware of BF
Advanced top charging equipment can support uniform gas flow and center gas flow with the following capabilities.

1. High rotating speed: 12 rpm (1.5 times of conventional type)
2. High tilting speed: 3 times of conventional type
3. Improved chute: Avoiding material disperse and ensuring the center coke charge
3.2. Additional effects of optimum hardware and operation of BF

- Generally, the coke ratio reduction by PCI is **limited by upper limit of K value** (gas permeability resistance in BF).
- Charging **Hi-C DRI** and optimum hardware and operation of BF can **improve gas permeability** of BF, and can increase PCI.
- **Double** to the conventional effects has been verified to the BF productivity increase and coke ratio reduction.

<Relation between coke ratio and permeability>

<Effect of Optimum operation >

- **K value (Pressure drop)**
- **Increase of NG or PCI → CR down, K value up**
- **Hi-C DRI**
- Uniform gas flow
- Other parameters → CR down, K value down
- **Limit of K value**

- **Coke ratio**
- **Hot metal production increase (%)**
- **Coke rate decrease (%)**
- **Burden metallization (%)**
- **: Conventional operation**
- **: Optimum operation**
3. Charging Hi-C DRI and optimized BF operation

- **Hi-C DRI** and **optimized BF hardware & operation** can enhance **hot metal cost merit** more than **twice** compared to Low C DRI and Conventional DRI charging.

<table>
<thead>
<tr>
<th></th>
<th>Conventional operation (no DRI)</th>
<th>Low C DRI and conventional BF hardware & operation</th>
<th>Hi-C DRI and optimized BF hardware & operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRI</td>
<td>kg/t-p</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>PCI</td>
<td>Base</td>
<td>Base</td>
<td>Increase</td>
</tr>
<tr>
<td>Material distribution</td>
<td>Base</td>
<td>Base</td>
<td>Optimum</td>
</tr>
<tr>
<td>Coke ratio</td>
<td>kg/t-p</td>
<td>Base</td>
<td>- 7%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 16%</td>
</tr>
<tr>
<td>Productivity</td>
<td>t/m3/day</td>
<td>Base</td>
<td>+ 6%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>+ 14%</td>
</tr>
<tr>
<td>Hot metal cost</td>
<td>$/t-p*1)</td>
<td>Base</td>
<td>- 3 ~ -4</td>
</tr>
<tr>
<td>merit</td>
<td></td>
<td></td>
<td>- 6~ -10</td>
</tr>
<tr>
<td></td>
<td>Million $/y*2)</td>
<td>Base</td>
<td>-27~ -36</td>
</tr>
<tr>
<td>CO2 emission</td>
<td>Million t/y*2)</td>
<td>Base</td>
<td>-1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-1.6</td>
</tr>
</tbody>
</table>

*1) COG=24$/Gcal, Electricity=0.07$/kWh, O2=0.05$/Nm3, Coke=210-270$/t, PC=100$/t, Sinter=74$/t, Lump=81$/t, Pellet=117$/t
*2) In case of annual production is 9 million ton.
1. Introduction
2. Features of ENERGIRON process
3. Charging Hi-C DRI and optimized BF operation
4. Beneficial using by-pro gas (COG, BFG, LDG) in integrated steel mill
5. Combination of coal gasification and ENERGION
6. Conclusion
4. Beneficial using by-pro gas (COG, BFG, LDG)

4.1. Gas balance and feeding to ENERGIRON in integrated steel mill

By-pro gas is generated **2.2 Gcal/t-steel**, and **40%** is for power generation. **0.25 Gcal/t-s** of by-pro gas, only **30%** for power generation, can produce **100 kg/t-s** of DRI for charging to BF.

⇒ Beneficial using by-pro gas can utilize reduction gas to ENERGIRON on **low cost** in **non-natural gas producing region**.

Example of by-pro gas generation in integrated steel mill

Example of by-pro gas usage in integrated steel mill
4. Beneficial using by-pro gas (COG, BFG, LDG)

4.1. Gas balance and feeding to ENERGIRON

0.25 Gcal/t-s of gas can produce 100 kg/t-s of DRI or 83 kWh/t-s.

By-pro gas 0.25 Gcal/t-s
- COG 0.18
- BFG 0.07

Power generation benefit is 0.8 US$/t-s, if by-pro gas cost is 20 US$/Gcal and purchased power price is 80 US$/MWh.

<table>
<thead>
<tr>
<th></th>
<th>unit</th>
<th>$/unit</th>
<th>unit/MWh</th>
<th>$/MWh</th>
<th>$/t-s</th>
</tr>
</thead>
<tbody>
<tr>
<td>By-pro gas</td>
<td>Gcal</td>
<td>20</td>
<td>3</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Other cost</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Power cost</td>
<td></td>
<td></td>
<td></td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Power price</td>
<td></td>
<td></td>
<td></td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Power Benefit</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>0.8</td>
</tr>
</tbody>
</table>

On the other hand, benefit of DRI producing and charging to BF is 6 to 10 US$/t-s, it is much bigger than power generation.
Contents

1. Introduction
2. Features of ENERGIRON process
3. Charging Hi-C DRI and optimized BF operation
4. Beneficial using by-pro gas (COG, BFG, LDG) in integrated steel mill
5. Combination of coal gasification and ENERGION
6. Conclusion
4. Combination of coal gasification and ENERGION

(1) Efficient Co-Production with Coal Flash Partial Hydro-pyrolysis Technology (ECOPRO): high efficient two-stage entrained flow gasifier

Pilot plant test has been completed from 2003 to 2009, supported by Japanese Government (METI) through Japan Coal Energy Center (JCOAL), and verified as follows,

(1) World highest energy efficiency of 85%, 5 to 10% higher than the other gasifier
(2) Applicability of the process to low-rank coals including brown coal and operating stability

By application of ECOPRO and ENERGIRON, total energy efficiency is increased by 5 -10%
4. Combination of coal gasification and ENERGION

(2) Energy Saving CO2 Absorption Process (ESCAP)

the most efficient energy cut-off chemical absorption process for CO2 capture

NSENGI have developed ESCAP in the project sponsored by NEDO(*1). ESCAP were **42% reduction** in reaction energy (**2.3 GJ/t-CO2**) compared to conventional MEA (Mono Ethanol Amine).

The commercial plant of ESCAP with 120 t-CO2/day was constructed in NSSMC(*2) in 2014, and have been **operated well on planned condition**. The recovered CO2 from the hot stove exhaust gas of BF is used mainly dry ice and beverage.

(*1) New Energy and Industrial Technology Development Organization (*2) Nippon Steel & Sumitomo Metal
1. Introduction
2. Features of ENERGIRON process
3. Charging Hi-C DRI and optimized BF operation
4. Beneficial using by-pro gas (COG, BFG, LDG) in integrated steel mill
5. Combination of coal gasification and ENERGION

6. Conclusion
(1) Charging **Hi-C DRI** and optimized BF hardware & operation can **increase productivity** and **decreased coke ratio**, because of **improving reduction, permeability** and **flow control** in the BF. Hot metal cost down merit is **6~10 US$/t-s**, at annual production is 9 million ton, annual merit is **54~90** million US$. The reinforcing coke oven and BF is **not necessary** for increasing steel production, because productivity is increased and coke rate is decreased.

(2) By-pro gas can be **converted from power generation** to producing Hi-C DRI, considering **gas balance and benefit**.

(3) Combination with **coal gasification** can expand market to **non-natural gas producing region**. Total efficiency can be improved more by application of **ECOPRO** (high efficiency coal gasifier) and **ESCAP** (Energy Saving CO$_2$ Absorption Process).