Feature of UBB™

- Layout Image
 - Non-buckling and equivalent strength in tension and compression enables a variety of layout patterns.

- UBB™ Performance
 - HYBRID LOAD in tension and compression have equal strength and stiffness, in the pre- and post-yield ranges.
 - Same mechanics in tension and compression.
 - Stable and symmetric behavior in tension and compression.

- BCI Approval
 - UBBS were adopted in more than 800 projects in the world.
 - UBBS have been conducted a number of loading tests which satisfy design requirements of seismic design manual issued by American Institute of Steel Construction (AISC).

- Satisfaction of seismic manual issued by AISC

- Material Specifications

<table>
<thead>
<tr>
<th>Core Plate</th>
<th>Steel Tube</th>
</tr>
</thead>
<tbody>
<tr>
<td>JIS SS400 [similar to ASTM A36]</td>
<td>ASTM A500, JIS STKR400 or JIS STK400, Thickness : 3.2 mm to 16 mm Width or Diameter : 100 to 500 mm (larger sizes are possible upon request)</td>
</tr>
</tbody>
</table>

- Steel Material:
 - JIS SN400 [similar to ASTM A1043(Gr.36)]
 - JIS SN490 [similar to ASTM A1043(Gr.50)]
 - NSSMC Standard BT-LYP225 (Certified material by Ministry of Land, Infrastructure, Transport and Tourism)
 - ASTM A36
 - ASTM A1043 (Gr. 36)
 - ASTM A1043 (Gr. 50)

- Minimum core plate thickness is 12mm (1/2in.) [19mm (3/4in.) or thicker is recommended].

- Design of Steel Tube

UBBS are adopted more than 800 projects in the world.

UBB™ (Unbonded Brace)
UBBTM is a structural brace element consisting of a steel core plate which is restrained by mortar and steel tube. This ingenious combination of components produces stable and symmetric tension-compression hysteretic behavior. The core plate do not transfer to the mortar and the steel tube.

UB BM Main Components
- **UBBM**'s components
- **UBBM**'s concept

UB BM Concept
UBBM is an innovative structural brace element consisting of a steel core plate which is restrained by mortar and steel tube. This combination of components produces stable and symmetric tension-compression hysteretic behavior. The core plate do not transfer to the mortar and the steel tube.

UB BM Applications
- **UBBM** applications have started in Japan.
- **UBBM** applications at Carlton Science Building at U.C. Davis in 1999.
- **UBBM** application at Football stadium, Toyota, Aichi in 2000.
- **UBBM** application at NTU earth science building in Singapore in 2001.
- **UBBM** application at Tsinghua Science Park Building in Beijing in 2005.

UB BM Performance Data
- **UBBM** has shown stable hysteretic behavior for axial strains as high as 7.2%.
- **UBBM** has shown stable hysteretic behavior for over 100 cycles at an axial strain of ± 1%.
- **UBBM** has shown stable hysteretic behavior for over 200 cycles at an axial strain of ± 4%.

UB BM Configurations and Core Material Types
- **Flat Plate** (-)
- **Gusset Plate** (+)

History of UB BM
- **1960s**
 - Early UB BM
 - UB BM development and applications in Japan by Nippon Steel Corporation (UBBM).
- **1980s**
 - UB BM applications have started in Japan.
 - UB BM applications at Taipei County Government Building in Taiwan.
 - UB BM applications at National Taiwan University in Taiwan.

UB BM Research and Development
- **UBBM**'s main components
- **UBBM**'s concept
- **UBBM**'s configuration and core material types
- **UBBM**'s performance data
- **UBBM**'s applications
- **UBBM**'s history

What's response controlled structure?

Conventional Structure
- Primary frame itself has to yield seismic force

Response Controlled Structure with UBBTM
- Response control devices absorb seismic force to minimize the damage and the horizontal deformation of structure

UBBM configurations and core material types

UBBM configurations and core material types include: Flat Plate (-) and Gusset Plate (+). These configurations can be used for both yielding and non-yielding applications.

UBBM performance data

- **UBBM** has shown stable hysteretic behavior for over 100 cycles at an axial strain of ± 1%.
- **UBBM** has shown stable hysteretic behavior for over 200 cycles at an axial strain of ± 4%.
- **UBBM** has shown stable hysteretic behavior for over 300 cycles at an axial strain of ± 10%.

UBBM's main components

- **UBBM** consists of a steel core plate which is restrained by mortar and steel tube. This combination of components produces stable and symmetric tension-compression hysteretic behavior.
- The core plate do not transfer to the mortar and the steel tube.
- A membrane called the unbonding material, between the mortar and the core plate, ensures that axial forces in the core plate do not transfer to the mortar and the steel tube.

UBBM concept

- **UBBM** concept is based on the idea of using unbonded components to create a stable and symmetric hysteretic behavior.
- The core plate do not transfer to the mortar and the steel tube.
- A membrane called the unbonding material, between the mortar and the core plate, ensures that axial forces in the core plate do not transfer to the mortar and the steel tube.

UBBM applications

- **UBBM** applications have started in Japan.
- **UBBM** applications at Carlton Science Building at U.C. Davis in 1999.
- **UBBM** application at Football stadium, Toyota, Aichi in 2000.
- **UBBM** application at Tsinghua Science Park Building in Beijing in 2005.

UBBM performance data

- **UBBM** has shown stable hysteretic behavior for over 100 cycles at an axial strain of ± 1%.
- **UBBM** has shown stable hysteretic behavior for over 200 cycles at an axial strain of ± 4%.
- **UBBM** has shown stable hysteretic behavior for over 300 cycles at an axial strain of ± 10%.

UBBM configurations and core material types

- **Flat Plate** (-)
- **Gusset Plate** (+)

UBBM performance data

- **UBBM** has shown stable hysteretic behavior for over 100 cycles at an axial strain of ± 1%.
- **UBBM** has shown stable hysteretic behavior for over 200 cycles at an axial strain of ± 4%.
- **UBBM** has shown stable hysteretic behavior for over 300 cycles at an axial strain of ± 10%.

UBBM's main components

- **UBBM** consists of a steel core plate which is restrained by mortar and steel tube. This combination of components produces stable and symmetric tension-compression hysteretic behavior.
- The core plate do not transfer to the mortar and the steel tube.
- A membrane called the unbonding material, between the mortar and the core plate, ensures that axial forces in the core plate do not transfer to the mortar and the steel tube.

UBBM concept

- **UBBM** concept is based on the idea of using unbonded components to create a stable and symmetric hysteretic behavior.
- The core plate do not transfer to the mortar and the steel tube.
- A membrane called the unbonding material, between the mortar and the core plate, ensures that axial forces in the core plate do not transfer to the mortar and the steel tube.

UBBM applications

- **UBBM** applications have started in Japan.
- **UBBM** applications at Carlton Science Building at U.C. Davis in 1999.
- **UBBM** application at Football stadium, Toyota, Aichi in 2000.
- **UBBM** application at Tsinghua Science Park Building in Beijing in 2005.

UBBM performance data

- **UBBM** has shown stable hysteretic behavior for over 100 cycles at an axial strain of ± 1%.
- **UBBM** has shown stable hysteretic behavior for over 200 cycles at an axial strain of ± 4%.
- **UBBM** has shown stable hysteretic behavior for over 300 cycles at an axial strain of ± 10%.

UBBM configurations and core material types

- **Flat Plate** (-)
- **Gusset Plate** (+)